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OPTIMIZATION OF DISTRIBUTED MONOLITHIC GaAs AMPLIFIERS

USING AN ANALYTICAL/GRAPHICAL TECHNIQUE

Michael Ross* and Robert G. Harri.scm

Department of Electronics, Carleton University
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ARSTRACT

An artalytical/graphical procedure pro-
vide~ a close approxinmtioli to the optimum

desigli of a c?istibuted monolithic GaAs
amplifier, gi ven specific .gaiIi and l-dB
bandwidth requirements. The technique
gives the optimum number of stages, the FET

climerisions and the values of the lumped in-
ductors used to realize the artifical
transmission lines.

INTRODUCTION

Conventional design approaches for dis-

tributed monolithic GaAs amplifiers typi-

cally involve a detailed computer simula-

tion, followed by numerical optimization
[1]; the derivation of approximate for-

mulas, again followed by optimization [2,
3]; or by graphical techniques aimed at

achieving the maximum possible gain-

bandwidth product for a given transistor

design [4,51. In contrast, this paper
presents a simple norl–computer procedure
which provides not only the optimum values

of the lumped-element circuit components

but also the optimum design of the FETs

themselves

THRORY

The distributed amplifier circuit of
Fig.1 uses lumped inductors and is similar

to that in [4]. Fig..2 shows the small-

signal FET inodel [6]. Here it is assumed
that the parasitic Rg , R% and Rd are neg-
ligible. We also assume that the FETs are

unilateral, i.e. that Cd$ is negligible, so

that the gate and drain lines can be

treated separately. The resulting equi-
valent circuit is shown in Fig.3. Gate-

and drain–line losses are due to Ri and Rd~
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Fig. 1 Basic distributed amplifier.
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Fig.2 MESFET equivalent circuit. Tn istrsnsit time.

L~=Ld=L (11

and

c gs - cd~+cp = c (2)
respectively.

If the gate and drain lines have matched (where CP is an additional shunt
terminations, and are constrained by making capacitance), then the lines have equal

characteristi~
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GATE LINE where W is the FET gate width.

Because of (3), a simple relation be-
tween a, b and n can be found [7] from (8),

(9), (16) and (17):

CIEKl
where

k
kn =4=,

kRi

A simple relation

(18)

(191

can also be found between
(8), (9), (16) and (17):

1
I I

a,

To
we

b andW. From

w= ~o-iiz- ~ (20)

Eqn.(5) is a function of a, b, n and Q .

reduce the number of variables to three,

/
DRAIN LINE

Fig.3 Equivalent distributed MESFET amplifier circuit,

showing the artificial gate and drain lines. replace Q by $),d~ , the normalized fre-

quency at which AM drops by 1 clB. Then
QfdB(a, b, n) is tk;l num~ric~l solution of

(5) with AN set equal to 0.8193 and Q re-
placed by !21m , The unnormalized l-dB
roll-off frequency is

‘ldB = QldB(a, b, n) . @C . [211

To removs @c from consideration, we use

(~), (4), (15) and (22) to obtain

as well afi equal cutoff frequencies

(4]

With these constraints the normalized volt–

age g~in is, as in [4],

A(Q)
AN(Q) = ~

sinh(b/n) sinh(&] eb e-r
. (5)

sinh(b) sinh(g/n)~~~
&rc =

{

g 1

b kc4- ‘

(22)

where

L?m 20 e-bsinh(b)

Ao = 2 sinh(b/n)
(6)

Eqn. (.21) can now be written in the normal-

ized form

1% ‘~%(%b,~]l 7 (23)

i,s the low–frequency voltage gain,

(7)

is the ~lormalized frequency, and the

remaining quantities are
where

[1R,
a=n

~’

()

Zdo
b = :~ ,

ds

(8) ‘&wldBkc~”%S
(24)

[9) Equations (18) and (23) are plotted on
the (a, b) -plane in Figs. 4(a)-(c) for n =
3, 4 and 5.

TO remove gm and 20 from consideration,

we define the “process-indeperident normal–
ized low-frequency gain” ~ by dividing
(6) by gmZo and using (14) and (20):

c= P-Q , [10)

r“ P+cl , (11)

P = —*

J%

(12)

0=
aS22 (13)

dl-[1-(2a/n)21Q2

&(a,bm) = ~
Q e-bsinh(b]
a ~inh(b/n) , [25)We next define &af&fitkififPfZKk?@

parameters characterizing the FET fabrica–

tion process:
where

AO
qs

%m= “

k gm = gin/w , (14)

kC = cE,/w , (15]

‘R1 = RiW , (16)

kRd, = Rd,w, (17)

(26)
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DESIGN PROCEDURE
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Fig.4 Graphical optimization charts for

(a)n=3, (bln=4, (Cln =5.

The optimum design point on the (a, b) -
plane for a given distributed amplifier can

be obtained frQm the plots of Fig.4. Once
this point has been determined for a given

FET process and desired l-dB roll-off

point, the following design parameters can

be immediately calculated:

. the Qptimum number of stages n,

. the optimum inductor values L for the

lines,

, the optimum FET gate widthW, (and

~nce the intrinsic parameters gm,

SS , R, and Rd~ ) ,
● the low-frequency gain AD,

such that the gain is maximized across the

band of operation.

A suitable procedure is the following.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

by

f,a

Obtain the width-independent parameters

according to (14)-(17).

Find G from (24) using (a) and the

desired @ldB .

Calculate kn from (19).

Starting with n=4, locate the ap-

propriate curves of constant ~ and
~ in Fig.4(b) and their point of
intersection. If there are two such
points, take the one nearest the b-

axis . If thare is no intersection,

no solution exists for this value of n.

From (25), calculate ~~

Repeat steps (d) and (e) for n=3 and

r1=5, using Figs. 4(21) and 4(c). If
values of n exceeding 5 are needed,
use the curves for r1=5, but with &

multiplied by n2/25

Hence find values of a, b and n which
maximize & . Then A. can be calculated

from (26), w= from (22), and L from

(3) and (4), (i.e. L = 2Z~@c ). Z. is

fixed by external requirements and is
normally 50 Q .

Use the optimum values of a and b to

calculate W from (20).

Verify that the approximations implicit

in (14)-(17) are still valid. If not,

repeat (a) to (h) using revised width-

independent FET parameters whi~h @.zY2
valid for the determined value of W.

EXAMPLE OF OPTIMIZATION

[Jsing FET parameters and Qhds as given
Beyer et al.[4] (they take W ❑ 300 pm,

= 16.52 GHz):

13m = 0.04 s

$s = 0.27 PF

C-cds+cp= 0.27 PF

Rd~ = 300 Q

Ili.7Q,

execution of the procedure of the previous
section results in Table 1. This shows
that the maximum value of A. is obtained
for n = 4, A voltaee gain of 3.77 (power
gain = 11.5 dB) is achieved using FETs of
339 &un gate-width.
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TABLE 1
Graphically -Detemined Distributed Amplifier F’arawters

r nz 3 4 4 (Ref[41) 5

a 0.29 0.49 (0.56) 1 62

b 0,18 0.19 (0.17) 0.09

% 1 58 2.06 (1.67) 1.07

% 3.62 3.77 (3.27) 1.96

w(w) 431 339 (3001 128

% o 77 0.81 (0.70) 0.42

f. (GHz) 16.5 21.0 (23.6) 55.5

L (nH) 0.96 0.76 (0.67) 0.29

g= (mS) 57 45 (40) 17

R, (Q) 4.9 62 (7.0) 16 4

C=% (pF) 0.39 0.31 (0.27) 0.12

Rm (n) 209 265 (300) 703

COMPARISON WITH OTKER APPROACHES

Fig.5 shows the frequency response of

the 4-stage distributed amplifier optimized

by the present. method. Also shown is the

response of the same amplifier as analyzed
by SUPER COMPACT [8]: here the optimum W is

350 pm. TILe disagreement below N7 GHz is

14-
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Fig. 5 Comparison of frequency responses obtained

by the present method, by computer

optimization, and by Beyer et al. [4],

due to the slight frequency-dependence of

the drain-line impedance. The non-

o~timized result of Beyer et al. [4] is in-.
eluded for comparison.

CONCLUSIONS

A novel analytical/graphical

the optimization of distributed

amplifiers has been described.

a computer is not required, the

tained compare favorably

approach to

G>As MESFET

Even though

results ob-

with those
resulting from exhaustive simulation:~ and
optimization using conventional numerical

techniques.
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