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OPTIMIZATION OF DISTRIBUTED MONOLITHIC GaAs AMPLIFIERS
USING AN ANALYTICAL/GRAPHICAL TECHNIQUE

Michael Ross* and Robert G. Harrison

Department of Electronics, Carleton University

Ottawa, Ontario,

ABSTRACT

An analytical/graphical procedure pro-
vides a close approximation to the optimum
design of & distibuted monolithic Gads
amplifier, given spsecific gain and 1-dB
bandwidth regquirements. The technigque
gives the optimum number of stages, the FET
dimensions and the values of the lumped in-
ductors used to realize the artifical
transmission lines.

INTRODUCTION

Conventional design approaches for dis-
tributed monolithic GaAs amplifiers typi-
cally inveolve a detailed computer simula-
tion, followed by numerical optimization
{1]; the derivation of approximate for-
mulas, again followed by optimization [2,
31; or by graphical techniques aimed at
achieving the maximum possible gain-
bandwidth product for a given transistor
design [4,5]. In contrast, this paper
presents a simple non-computer procedure
which provides not only the optimum values

of the lumped-element circuit components
but also the optimum design of the FETs
themselves.

THEORY

The distributed amplifier circuit of
Fig.l uses lumped inductors and is similar
to that in [4]. Fig.2 shows the small-
signal FET model [6]. Here it is assumed
that the parasitics Ry, Ry and Ry are neg-
ligible. We also assume that the FETs are
unilateral, i.e. that C4 1is negligible, so
that the gate and drain lines can be
treated separately. The resulting equi-
valent circuit is shown in Fig.3. Gate-
and drain-line losses are due to Ry and Ry
respectively.

If the gate and drain lines have matched
terminations, and are constrained by making
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Tq istransit time.

Ly = Lg = L (1)
and

Cgs = Cae*Cp = C (2)

8s

(where Cp is an additional shunt
capacitance), then the Llines have equal
characteristic impedances

L
Zgo = Zap = NE - Zo» (3)
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Fig.3 Equivalent distributed MESFET amplifier circuit,
showing the artificial gate and drain lines.

as well as egqual cutoff frequencies

2 . , )
ALC We

With these constraints the normalized volt-
age gain is, as in [4],

_AQ)
AylQ) = Ay
~ sinh(b/n) sinh(g) e® e (s)
sinh(b) sinh(E/n) N1-02 N1+(2a0/n)*
where
_b :
g Zg e~ Psinh(b)
Ay = T3 sinhto/n) (6)
is the low-frequency voltage gain,
0 = 2 (7}

We

is the normalized frequency, and the
remaining quantities are

R
5 1., (8)
n[:zzﬂ]

a =
z
- D} ~do
b = 4(Rds] , (9)
E = P-Q, (10)
r = P+Q, (1n
P - b = (12)
1-0
n - ag? . (13

Nl-11-(2a/m20°

We next define gate-width-independent
parameters characterizing the FET fabrica-
tion process:

kgm = 8,/W . (14)
ke = Coe/W . (15)
ke = RW, (16)
kpgs = RgsW, (17}
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where W is the FET gate width.

Because of (3), a simple relation be-
tween a, b and n can be found [7] from (8),
(9), (16) and (17):

2
ab = & (18)
kn
where
k
k = 4 .Rds , (19)
n kgy

A simple relation can also be found between
a, b and W. From (8), (8), (16} and (17):

2 b
W= Zg\j & kpas kgy - (20)

Ean.(5) is a function of a8, b, n and Q.
To reduce the number of variables to three,
we replace 2 by 4 , the normalized fre-
guency at which Ay drops by 1 dB. Then
Qqpla, b, n) is the numerical solution of
(5) with Ay set equal to 0.8193 and 2 re-
placed by Sy The unnormalized 1-dB
roll-off frequency is

wigg = Qgpla, b, L owg . {z1)

To remove W,
(33, (41,

from consideration, we use
(15) and (22) to obtain

(22)

w = Q ————;————_ .
¢ % kcA%Ras Kgi

Egn.(21) can now be written in the normal-
ized form

g = q.—;ﬂ Qqpla, b, 1) | | (23)

where
Ty = @us ke A Bpas Kri - (24)

Equations (18) and (23) are plotted on
the {a, b)~prlane in Figs. 4(a)-(c) for n =
3, 4 and 5.

To remove &, and 2y from consideration,
we define the “process-independent normal-
ized low-frequency gain™ A, by dividing
(68) by €nZn and using (14) and (20):

i _ b e Psinh(b)
Aglabn) = q; sinh(b/n) | 1 (25)
where
— A
A o2 —=f—. (26)
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The optimum design point on the (a, b) -

27 plane for a given distributed amplifier can
be obtained from the plots of Fig.4. Once
ad this point has been determined for a given

FET process and desired 1-dB roll-off
point, the following design parameters can
be immediately calculated:
.« the optimum number of stages n,
. the optimum inductor values L for the
lines,
, the optimum FET gate width W, (and
hence the intrinsic parameters 8.,
Cas , R, and Ry, ),

Mm// 1& + the low-frequency gain Ag,
24 20 125 such that the gain is maximized across the
?; Eﬁg band of operation.
. 1o i A suitable procedure is the following.
e 2.1 2.2 - 2 4 (a) Obtain the width-independent parameters
b according to (14)-(17).
(b) Find Wy from (24) using (a) and the
4 GuB 15125 10 075 desired W .
(c) Calculate k, from (19).
(d) Starting with n=4, locate the ap-
24 1w propriate curves of constant Wigp and
in Fig.4(b) and their point of
) intersection. If there are two such
A n=4 points, take the one nearest the b-
20 axis. If there is no intersection,
g no solution exists for this valus of n.
’ (e) From (25), calculate A, .
(£f) Repeat steps (d) and (e) for n=3 and
.5 n=5, using Figs. 4(a) and 4(c). If
values of n exceeding 5 are needed,
kn use the curves for n=zb, but with k;
4] 100 multiplied by n2/25.
12 {g) Hence find values of a, b and n which
2 D 1 maximize Ag . Then Ag can be calculated
L1 250 from (26), w. from (22), and L from
13 (3) and (4), (i.e. L = 22j/w. ). Zg is
g —0I8 , r . ' fixed by external requirements and is
2] 8.1 2.2 a.3 2.4 normally 50 @ .

(h) Use the optimum values of a and b to
calculate W from (20).

(1) Verify that the approximations implicit
in (14)-(17) are still valid. If not,
repeat (a) to (h) using revised width-
independent FET parameters which are
valid for the determined value of W.

175 15 125 10 0.75 @1ap

EXAMPLE OF OPTIMIZATION

Using FET parameters and W, as given
by Beyer et al.[4] (they take W = 300 ym,

flaqg = 16.52 GHz):
N g, - 0.04 S
gs = 0.27 pF
c = Cg4e * Cp = 0.27 pF
.2 Ry = 300 @
R, = 74q,
a execution of the procedure of the previous
@ section results in Table 1. This shows
that the maximum value of Ag 1is obtalned
i . L for n = 4. A voltage gain of 3.77 (power
Fig.4 Graphical optimization charts for gain = 11.5 dB) is achieved using FETs of
@n=3 M®n=4 (cln-=35 339 ym gate-width.
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TABLE 1
Graphically~Determined Distributed Amplifier Parameters

n = 3 4 4 (Ref[4]) 5
" 579 549 ) 167
b 0.18 0.19 (0.17) 0.09
Ay 1 98 2.06 (1.87) 1.07
o 3.62 577 (3.21) T
W (um) 431 339 (300) 128
o 577 081 (©.70) 0.4z
fe (GHz) 16.5 21.0 (23.8) 55.5
L (nH) .96 0.76 (0.87) 0.29
[ (mS) 57 45 (40) 17
R (8) 13 52 7.0 6 4
Cgs (PF) 0.39 0.31 (0.27) 0.12
Rey (7 269 265 (300 703

COMPARISON WITH OTHER APPROACHES

Fig.5 shows the frequency response of
the 4-stage distributed amplifier optimized
by the present method. Also shown 1s the
response of the same amplifier as analyzed
by SUPER COMPACT {8]: here the optimum W is
350 um . The disagreement below ~7 GHz is

14
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optimization, W = 350 pm
e B Solution of Beyer
et al. [4), W = 300 pm.
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Fig.5 Comparison of frequency responses obtained
by the present method, by computer
optimization, and by Beyer et al. [4].

due to the slight frequency-dependence of
the drain-line impedance. The non-
optimized result of Beyer et al. [4] is in-
cluded for comparison.

CONCLUSIONS

A novel analytical/graphical approach to
the optimization of distributed GaAs MESFET
amplifiers has been described. Even though
a computer is not required, the results ob-
tained compare favourably with those
resulting from exhaustive simulations and
optimization using conventional numerical
techniques.
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